Irreducible totally nonnegative matrices with a prescribed Jordan structure

نویسندگان

چکیده

Let A∈Rn×n be an irreducible totally nonnegative matrix with rank r and principal p, that is, all minors of A are nonnegative, is the size largest invertible square submatrix p its submatrix. triple (n,r,p) called realizable if there exists n×n p. In this work we present a method to construct matrices associated prescribed Jordan canonical form corresponding zero eigenvalue.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Computations with Totally Nonnegative Matrices

Is it possible to perform numerical linear algebra with structured matrices to high relative accuracy at a reasonable cost? In our talk we answer this question affirmatively for a class of structured matrices whose applications range from approximation theory to combinatorics to multivariate statistical analysis [1, 2, 4]—the Totally Nonnegative (TN) matrices, i.e. matrices all of whose minors ...

متن کامل

Totally Nonnegative (0, 1)-Matrices

We investigate (0, 1)-matrices which are totally nonnegative and therefore which have all of their eigenvalues equal to nonnegative real numbers. Such matrices are characterized by four forbidden submatrices (of orders 2 and 3). We show that the maximum number of 0s in an irreducible (0, 1)-matrix of order n is (n − 1) and characterize those matrices with this number of 0s. We also show that th...

متن کامل

Nonnegative matrices with prescribed extremal singular values

We consider the problem of constructing nonnegative matrices with prescribed extremal singular values. In particular, given 2n−1 real numbers σ ( j) 1 and σ ( j) j , j = 1, . . . , n, we construct an n×n nonnegative bidiagonal matrix B and an n×n nonnegative semi-bordered diagonal matrix C , such that σ ( j) 1 and σ ( j) j are, respectively, the minimal and the maximal singular values of certai...

متن کامل

Immanants of Totally Positive Matrices Are Nonnegative

If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should po...

متن کامل

Interlacing Inequalities for Totally Nonnegative Matrices

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short proof is given of the interlacing inequalities: λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying the above inequalities, then there exists a totally nonneg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2020.09.001